pcp-mcp¶
MCP server for Performance Co-Pilot (PCP) metrics.
Query system performance metrics via the Model Context Protocol - CPU, memory, disk I/O, network, processes, and more.
Features¶
- System Monitoring - CPU, memory, disk I/O, network, load averages
- Process Monitoring - Top processes by CPU, memory, or I/O usage
- Metric Discovery - Search and explore 1000+ PCP metrics
- Remote Monitoring - Monitor any host running pmcd
- Real-time Data - Direct access to PCP's high-resolution metrics
- MCP Resources - Browse metrics via
pcp://URIs
Architecture¶
┌─────────┐ ┌─────────┐ ┌─────────┐ ┌─────────┐
│ LLM │ ◄─MCP─► │ pcp-mcp │ ◄─HTTP─► │ pmproxy │ ◄─────► │ pmcd │
└─────────┘ └─────────┘ └─────────┘ └─────────┘
(REST API) (metrics)
pcp-mcp is a FastMCP server that exposes Performance Co-Pilot metrics through the Model Context Protocol. It connects to PCP's REST API server (pmproxy) to fetch real-time system metrics.
Quick Start¶
# Install
pip install pcp-mcp
# Install PCP (if not already installed)
sudo dnf install pcp
sudo systemctl enable --now pmproxy
# Run the MCP server
pcp-mcp
Configure Claude Desktop (~/.config/claude/claude_desktop_config.json):
Use Cases¶
🔍 Performance Troubleshooting¶
Ask your LLM: - "Analyze current system performance and identify bottlenecks" - "Why is my disk I/O so high?" - "Which processes are consuming the most CPU?"
📊 System Monitoring¶
- "Give me a health check of the production server"
- "Compare CPU usage over the last minute"
- "Monitor network traffic on eth0"
📈 Capacity Planning¶
- "What's the memory utilization trend?"
- "Show me disk usage across all filesystems"
- "Analyze process resource consumption patterns"
Requirements¶
- Python: 3.10+
- PCP: Performance Co-Pilot with
pmproxyrunning